Search results for "Julia set"
showing 4 items of 4 documents
Bifurcations in the elementary Desboves family
2017
International audience; We give an example of a family of endomorphisms of $\mathbb{P}^2(\mathbb{C})$ whose Julia set depends continuously on the parameter and whose bifurcation locus has non-empty interior.
Invariant Jordan curves of Sierpinski carpet rational maps
2015
In this paper, we prove that if $R\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpi\'nski carpet, then there is an integer $n_0$, such that, for any $n\ge n_0$, there exists an $R^n$-invariant Jordan curve $\Gamma$ containing the postcritical set of $R$.
Equilibrium measures for uniformly quasiregular dynamics
2012
We establish the existence and fundamental properties of the equilibrium measure in uniformly quasiregular dynamics. We show that a uniformly quasiregular endomorphism $f$ of degree at least 2 on a closed Riemannian manifold admits an equilibrium measure $\mu_f$, which is balanced and invariant under $f$ and non-atomic, and whose support agrees with the Julia set of $f$. Furthermore we show that $f$ is strongly mixing with respect to the measure $\mu_f$. We also characterize the measure $\mu_f$ using an approximation property by iterated pullbacks of points under $f$ up to a set of exceptional initial points of Hausdorff dimension at most $n-1$. These dynamical mixing and approximation resu…
Convergence of KAM iterations for counterterm problems
1998
Abstract We analyse two iterative KAM methods for counterterm problems for finite-dimensional matrices. The starting point for these methods is the KAM iteration for Hamiltonians linear in the action variable in classical mechanics. We compare their convergence properties when a perturbation parameter is varied. The first method has no fixed points beyond a critical value of the perturbation parameter. The second one has fixed points for arbitrarily large perturbations. We observe different domains of attraction separated by Julia sets.