Search results for "Julia set"

showing 4 items of 4 documents

Bifurcations in the elementary Desboves family

2017

International audience; We give an example of a family of endomorphisms of $\mathbb{P}^2(\mathbb{C})$ whose Julia set depends continuously on the parameter and whose bifurcation locus has non-empty interior.

[ MATH ] Mathematics [math]Pure mathematicsEndomorphismMathematics - Complex VariablesApplied MathematicsGeneral Mathematics010102 general mathematicsDynamical Systems (math.DS)MSC: 32H50 37F4516. Peace & justice01 natural sciencesJulia setDynamicsRational mapsBifurcation locus0103 physical sciencesFOS: Mathematics32H50 37F45 37F50010307 mathematical physics0101 mathematics[MATH]Mathematics [math]Complex Variables (math.CV)Mathematics - Dynamical SystemsMathematics
researchProduct

Invariant Jordan curves of Sierpinski carpet rational maps

2015

In this paper, we prove that if $R\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpi\'nski carpet, then there is an integer $n_0$, such that, for any $n\ge n_0$, there exists an $R^n$-invariant Jordan curve $\Gamma$ containing the postcritical set of $R$.

Mathematics::Dynamical SystemsGeneral Mathematics[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]rational functionsMathematics::General TopologyDynamical Systems (math.DS)01 natural sciences37F10Combinatoricsexpanding Thusrston mapssymbols.namesakeHigh Energy Physics::TheoryMathematics::Quantum AlgebraFOS: MathematicsMathematics::Metric GeometryMathematics - Dynamical Systems0101 mathematicsInvariant (mathematics)MathematicsmatematiikkamathematicsSierpinski carpet Julia setsApplied Mathematicsta111010102 general mathematicsinvariant Jordan curveJulia setJordan curve theoremrationaalifunktiot010101 applied mathematicsrational mapsSierpinski carpetsymbols
researchProduct

Equilibrium measures for uniformly quasiregular dynamics

2012

We establish the existence and fundamental properties of the equilibrium measure in uniformly quasiregular dynamics. We show that a uniformly quasiregular endomorphism $f$ of degree at least 2 on a closed Riemannian manifold admits an equilibrium measure $\mu_f$, which is balanced and invariant under $f$ and non-atomic, and whose support agrees with the Julia set of $f$. Furthermore we show that $f$ is strongly mixing with respect to the measure $\mu_f$. We also characterize the measure $\mu_f$ using an approximation property by iterated pullbacks of points under $f$ up to a set of exceptional initial points of Hausdorff dimension at most $n-1$. These dynamical mixing and approximation resu…

Pure mathematicsEndomorphismMathematics - Complex VariablesMathematics::Complex VariablesGeneral Mathematicsta111mappings010102 general mathematicsEquidistribution theoremRiemannian manifoldintegrability01 natural sciencesJulia setMeasure (mathematics)manifoldsPotential theory30C65 (Primary) 37F10 30D05 (Secondary)Iterated functionHausdorff dimension0103 physical sciences010307 mathematical physicsMathematics - Dynamical Systems0101 mathematicsMathematicsJournal of the London Mathematical Society
researchProduct

Convergence of KAM iterations for counterterm problems

1998

Abstract We analyse two iterative KAM methods for counterterm problems for finite-dimensional matrices. The starting point for these methods is the KAM iteration for Hamiltonians linear in the action variable in classical mechanics. We compare their convergence properties when a perturbation parameter is varied. The first method has no fixed points beyond a critical value of the perturbation parameter. The second one has fixed points for arbitrarily large perturbations. We observe different domains of attraction separated by Julia sets.

Arbitrarily largeGeneral MathematicsApplied MathematicsMathematical analysisGeneral Physics and AstronomyPerturbation (astronomy)Statistical and Nonlinear PhysicsFixed pointAction variableCritical valueJulia setMathematicsChaos, Solitons & Fractals
researchProduct